5000 "XPOMOC"

Руководство пользователя "Природный газ"

no ΓΟCT 31371.7-08, ΓΟCT 31369-08

приложение к программе "Хромос" версия 4.6

Содержание

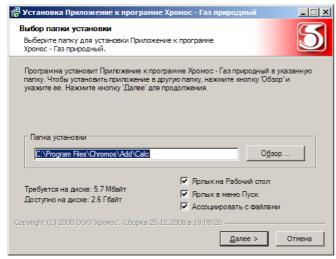
1. Назначение программы	.3
2. Установка программы	.4
3. Структура окон	
4. Настройка	
4.1. Окно "Имена компонентов"	.6
4.2. Окно "Настройки"	.8
4.3. Стандартные температуры сгорания и измерения	.10
5. Выбор и закрытие хроматограмм для расчета	.11
5.1. Выбор хроматограмм	
5.2. Удаление хроматограмм из расчёта	.12
6. Расчеты для компонентов природного газа	
6.1. Перевод из объемных процентов в молярные	.13
6.2. Усреднение значений молярных долей компонентов	.13
6.3. Сходимость результатов определения компонентного состава	.13
6.4. Предел сходимости результатов определения компонентного состава	.14
6.5. Неопределенность результатов определения компонентного состава	.14
6.6. Прочие компоненты	.14
7. Расчет физико-химических свойств природного газа	.16
7.1. Расчет физико-химических свойств природного газа	.16
7.2. Сходимость результатов вычислений	.17
7.3. Оценка пределов сходимости.	.17
7.4. Оценка неопределенности	.17
8. Ошибки и предупреждения	.18
9. Идентификация программы	.19
10. Проверка калибровки	
11. Формирование отчёта по результатам расчёта	
12. Экспорт данных	.22

1. Назначение программы

Программа предназначена для автоматизации вычислений теплот сгорания, плотности, относительной плотности, числа Воббе, средней молярной массы и коэффициента сжимаемости природного газа в соответствии с ГОСТ 31369-08. Исходными параметрами для расчета служат данные по компонентному составу из файлов хроматограмм природного газа, зарегистрированных с помощью программного обеспечения "Хромос".

Программа позволяет провести проверку приемлемости хроматографических данных, оценить пределы сходимости и расширенную неопределенность как результатов измерения компонентного состава, так и результатов вычисления физико-химических показателей природного газа. Некоторые метрологические характеристики, полученные пользователем по результатам собственных экспериментов по оценке показателей точности, могут задаваться в ручном режиме.

Программа позволяет добавлять в расчет компоненты, которые отсутствуют в хроматограммах и могут рассматриваться как присутствующие при постоянном содержании.


Расчёт и проверка метрологических характеристик ведётся по ГОСТ 31371.7-08.

2. Установка программы

Для инсталляции программы запустите файл пакета инсталляции.

Мастер установки поможет вам выбрать папку для установки программы, необходимость создания ярлыка на рабочем столе и ссылок в программном меню Windows.

Если у вас нет каких-нибудь специфических пожеланий достаточно выбрать кнопку "Далее", затем "Установить", и наконец "Готово"

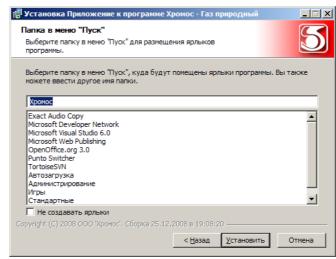


Рисунок 1 Рисунок 2

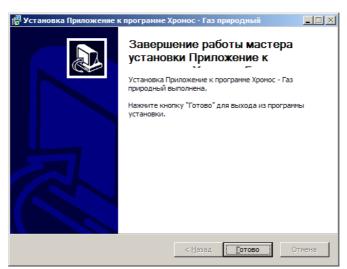


Рисунок 3

3. Структура окон

При запуске программы (двойной щелчок мышкой по ярлыку) на экране появляется основное окно приложения к программе Хромос "Газ природный", как это показано на рисунке 4.

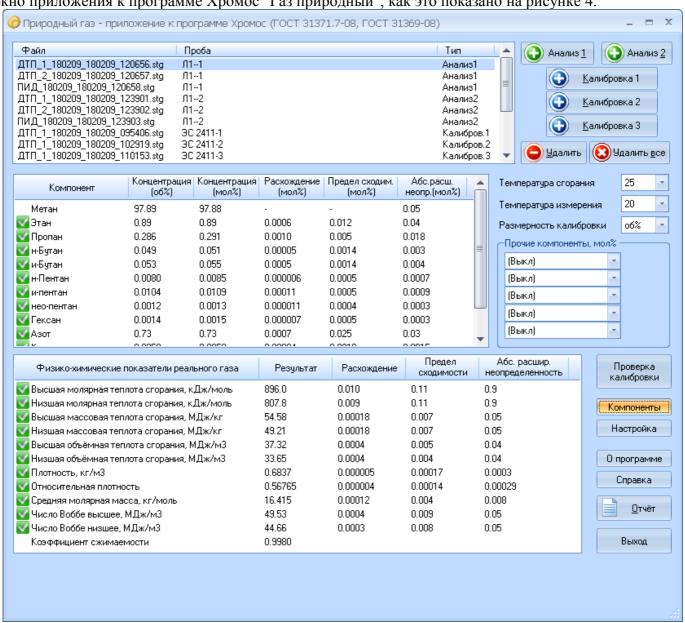


Рисунок 4

Окно служит для добавления хроматограмм для обработки, выбора условно-постоянных компонентов, температурных режимов и размерности компонентного состава; индикации усредненного компонентного состава и вывода результатов расчета физико-химических показателей природного газа.

Из основного окна с помощью кнопки "Компоненты" можно открыть окно "Имена компонентов", содержащее полный список компонентов природного газа, перечисленных в ГОСТ 31369-08 для настройки имён компонентов и установки абсолютной расширенной неопределённости средства градуировки.

Кнопка "Настройка" открывает окно "Настройка вывода данных", для задания количества значащих цифр в расчётных значениях, вида расчёта, а также для выбора опции для суммирования компонентов C6, C7 и C8 по группам.

Кнопка "Отчёт" служит для создания отчетов.

4. Настройка

4.1.Окно "Имена компонентов"

Для настроек некоторых параметров, связанных с компонентами служит кнопка "Компоненты". На экране появится окно "Имена компонентов" (рис.5). Окно представляет собой таблицу компонентов природного газа.

Компонент	Формула	Имя	Неопр. град %
Метан	CH4	Метан	0.00000
Этан	C2H6	Этан	0.00000
Пропан	C3H8	Пропан	0.00000
н-Бутан	C4H10	н-Бутан	0.00000
2-Метилпропан	C4H10	2-Метилпропан	0.00000
н-Пентан	C5H12	н-Пентан	0.00000
2-Метилбутан	C5H12	2-Метилбутан	0.00000
2,2-Диметилпропан	C5H12	2,2-Диметилпропан	0.00000
н-Гексан	C6H14	н-Гексан	0.00000
2-Метилпентан	C6H14	2-Метилпентан	0.00000
3-Метилпентан	C6H14	3-Метилпентан	0.00000
2,2-Диметилбутан	C6H14	2,2-Диметилбутан	0.00000
2,3-Диметилбутан	C6H14	2,3-Диметилбутан	0.00000
D6-1	C6H14	C6-1	0.00000
C6-2	C6H14	C6-2	0.00000
D6-3	C6H14	C6-3	0.00000
D6-4	C6H14	C6-4	0.00000
C6-5	C6H14	C6-5	0.00000
C6-6	C6H14	C6-6	0.00000
D6+	C6H14	C6+	0.00000
н-Гептан	C7H16	н-Гептан	0.00000
C 7-1	C7H16	C7-1	0.00000
C 7- 2	C7H16	C7-2	0.00000
C7-3	C7H16	C7-3	0.00000
C7-4	C7H16	C7-4	0.00000
C7-5	C7H16	C7-5	0.00000
C7-6	C7H16	C7-6	0.00000
C7-7	C7H16	C7-7	0.00000
C7-8	C7H16	C7-8	0.00000
C7-9	C7H16	C7-9	0.00000
C 7 +	C7H16	C7+	0.00000
н-Октан	C8H18	н-Октан	0.00000
C8-1	C8H18	C8-1	0.00000
C8-2	C8H18	C8-2	0.00000
D8-3	C8H18	C8-3	0.00000
C8-4	C8H18	C8-4	0.00000
C8-5	C8H18	C8-5	0.00000

Рисунок 5

В столбце "Компонент" содержится полный список компонентов в той же последовательности, как они приведены в ГОСТ 31369-08. В столбце "Формула" приведены химические формулы соответствующих компонентов. Данные столбцы не могут редактироваться пользователем.

В столбце "Имя" содержится список названий компонентов, используемых оператором при разметке хроматограмм. Первоначально содержимое столбца "Имя" совпадает с содержимым столбца "Компонент". При проведении настройки пользователь может изменить имя компонента на удобное для себя тривиальное название.

Подразумевается, что пользователь владеет систематической номенклатурой химических соединений. Например, для переименования компонента "2-Метилпропан" в "и-Бутан" выполните двойной щелчок мышкой в ячейку "2-Метилпропан" столбца "Имя (рис.6). Название редактируемого компонента выделится цветом. Введите привычное для Вас имя "и-Бутан" и нажмите клавишу "Enter" или щелкните мышкой в любую другую ячейку. Аналогично можно переименовать "2-Метилбутан" в "и-Пентан", "2,2-Диметилпропан" в "нео-Пентан" и.т.д.

Компонент	Формула	Имя	Неопр. град %
Метан	CH4	Метан	0.00000
Этан	C2H6	Этан	0.00000
Пропан	C3H8	Пропан	0.00000
н-Бутан	C4H10	н-Бутан	0.00000
2-Метилпропан	C4H10	2-Метилпропан	0.00000
н-Пентан	C5H12	н-Пентан	0.00000
2-Метилбутан	C5H12	2-Метилбутан	0.00000
2,2-Диметилпропан	C5H12	2,2-Диметилпропан	0.00000
н-Гексан	C6H14	н-Гексан	0.00000

Рисунок 6

В столбец "Неопределенность градуировки" заносят данные об абсолютной расширенной неопределенности (абсолютной погрешности) из паспорта на средство градуировки. В случае нулевых значений этот параметр принимает значение исходя из таблицы по требованиям к точности определения компонентного состава согласно ГОСТ 31371.7-08.

Если вводимые значения $U_j^{\it spad}$ будут настолько велики, что в расчетных формулах, содержащих $\sqrt{(U_j)^2 - k \cdot (U_j^{\it spad})^2}$, подкоренное выражение будет отрицательным или равным нулю, то на экране появится сообщение: "Невозможно рассчитать предел сходимости для следующих компонентов:" далее будут перечислены компоненты, для которых подкоренное выражение не положительно.

В завершении щелкните мышкой по кнопке "ОК" для сохранения сделанных изменений.

4.2.Окно "Настройки"

В основном окне программы щелкнете мышкой по кнопке Настройка. На экране появится окно

"Настройки расчетных параметров" (рас.7).

Настройки расчётных параметров							
Вид расчёта Вычисление концентрации метана	Реальный газ						
 ▼ Выбирать количество значащих цифр автоматически Количество значащих цифр компонентов							
Расчётные величины Значащих цифр в результате							
	Высшая молярная теплота сгорания Низшая молярная теплота сгорания						
	Высшая массовая теплота сгорания Низшая массовая теплота сгорания						
	Высшая объёмная теплота сгорания Низшая объёмная теплота сгорания						
✓ Плотность, кг/м3✓ Относительная плотность	4 кг/м3						
✓ Число Воббе высшее✓ Число Воббе низшее	4 мдж/м3						
▼ Коз ффициент сжимаемости	4						
Средняя молярная масса, кг/м	оль 4 кг/кмоль						
□ Рассчитывать суммарные концентрации для групп С6, С7 и С8 Источник данных для прочих компонентов							
	<u>*</u>						
Настройки отчёта Отмена ОК							

Рисунок 7

В выпадающем списке можно выбрать расчет для реального или идеального газа.

Ниже в выпадающем списке выбирается метод расчёта метана: по разности или по анализу.

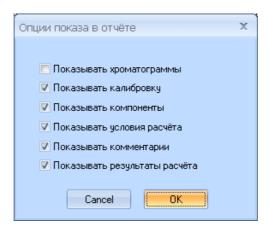
Также можно выбрать количество значащих цифр автоматически. При автоматическом выборе количества значащих цифр в результате расчёт руководствуется следующими положениями:

Сначала рассматривается абсолютная расширенная неопределённость расчётной величины. При её выводе берётся одна значащая цифра, но если это единица или двойка — берётся две значащих цифры для вывода результата.

Галочками отмечены физико-химические показатели, предназначенные для вывода на экран и распечатки в отчете.

Напротив каждого показателя указывается разрядность вывода данных.

В самом расчётном параметре (первая колонка) значение выводится с тем же количеством знаков после запятой, как и в абсолютной расширенной неопределённоси у данного параметра.


Если количество знаков после запятой превышает, установленное ГОСТ 31369-08, то количество знаков уменьшается. В частности значения теплот сгорания и число Воббе, приведенных в кДж/моль, МДж/кг и МДж/м3, округляются до 2-х знаков после запятой, плотность и относительная плотность до 4-х знаков после запятой.

Для объемной теплоты сгорания и числа Воббе предусмотрена возможность вывода результатов и в ккал/м3. Для этого в соответствующем выпадающем списке (рис.7) выбирается необходимая размерность. Число Воббе всегда имеет одну и ту же размерность, что и объёмная теплота сгорания.

Опция "рассчитывать суммарные концентрации для групп C6, C7 и C8" позволяет суммировать концентрации данных углеводородов, и выводить суммарную концентрацию в строке с нормальным углеводородом.

Ниже вводится источник данных для прочих компонентов. Эти данные распечатываются в отчёте.

Кнопка "Настройка отчёта" служит для вывода в отчёте только нужных блоков информации.

В завершении щелкните мышкой по кнопке "ОК". Измененные параметры сохранятся, а также запомнятся для работы и при последующих запусках программы.

4.3. Стандартные температуры сгорания и измерения

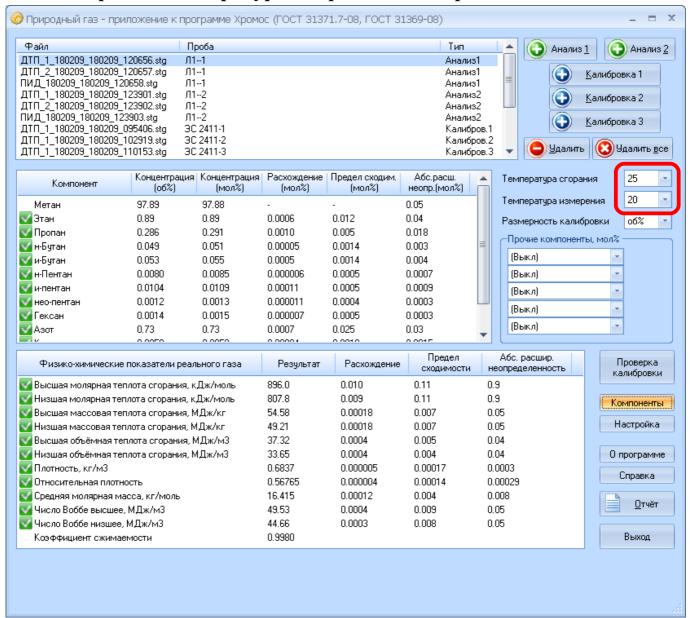


Рисунок 8

Стандартные температуры сгорания и измерения выбираются в основном окне программы (рис 8) из выпадающих списков дискретных значений.

Стандартная температура сгорания может быть выбрана 0, 15, 20 и 25°C.

Стандартная температура измерения может быть 0, 15, и 20°C.

Примечание:

В Российской Федерации стандартная температура сгорания принимается равной 25°C, а стандартная температура измерения или 20°C, или 0°C.

5. Выбор и закрытие хроматограмм для расчета

5.1.Выбор хроматограмм

Для выбора расчётных хроматограмм в основном окне программы щелкните мышкой по кнопке **Анализ1** или **Анализ2**.

Для выбора калибровочных хроматограмм служат кнопки **Калибровка1**, **Калибровка2** и **Калибровка3**.

На экране появится окно "Открытие хроматограммы" (рис. 10).

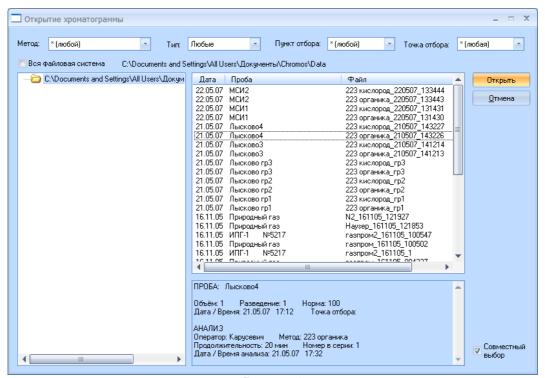


Рисунок 9

С помощью мышки выберите хроматограмму (название файла и пробы при этом выделится цветом). Удерживая нажатой клавишу "Ctrl" на клавиатуре, выберите мышкой другие требуемые хроматограммы (все выбранные хроматограммы выделятся цветом).

Примечание:

При поставленном флажке в опции "Совместный выбор" (рис. 10) можно одним щелчком мышки выбирать хроматограммы, полученные в ходе одного и того же единичного анализа, но с разных детекторов.

Для удобства поиска хроматограмм используйте возможности сортировки по методу, пункту отбора или точке отбора в соответствующих выпадающих списках окна "Открытие хроматограммы" (рис. 10).

Выделив хроматограммы, щелкните мышкой по кнопке **Открыть**. В основном окне программы (рис.12) появятся имена хроматограмм с названиями проб (названия переносятся из паспорта хроматограммы), усредненный компонентный состав (см.п.6.2), сходимость (см. п.п.6.3-6.4) и неопределенность (см.п.6.5) измерения компонентного состава, расчетные значения физико-химических показателей природного газа с оценкой неопределенности результатов их определения (см.п.7).

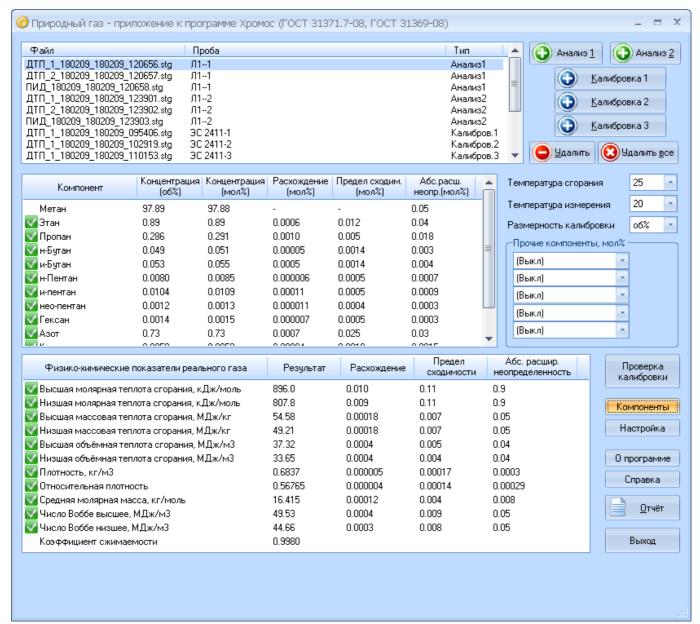


Рисунок 10

При необходимости пользователь может добавить еще хроматограммы для расчета, повторив последовательность действий п.5.1.

5.2. Удаление хроматограмм из расчёта

Для удаления из расчета одной хроматограммы в основном окне программы выделите с помощью мышки имя файла этой хроматограммы, затем щелкните по кнопке **Удалить**.

Для удаления нескольких хроматограмм в основном окне программы, удерживая нажатой клавишу "Ctrl" на клавиатуре, выделите с помощью мышки имена файлов этих хроматограмм, затем щелкните по кнопке Удалить.

Для удаления всех хроматограмм в основном окне программы щелкните по кнопке **Удалить все** Кнопки **Удалить и Удалить все** лишь убирают файлы хроматограмм из расчёта, но не удаляют файлы хроматограмм на диске.

6. Расчеты для компонентов природного газа

6.1.Перевод из объемных процентов в молярные

Программа выдает усредненный компонентный состав в объёмных и молярных процентах, а также соответствующие метрологические характеристики в молярных процентах. При этом в калибровочных хроматограммах компонентный состав может быть установлен как в молярных, так и объемных процентах.

Рисунок 11

Если в калибровочных хроматограммах компонентный состав установлен в молярных процентах, то в основном окне программы в поле "Размерность калибровки" в выпадающем списке следует выбрать "мол%" (рис.12)

Если в калибровочных хроматограммах компонентный состав установлен в объемных процентах, то в основном окне программы в поле "Размерность калибровки" в выпадающем списке следует выбрать "об%" (рис.13)

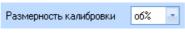


Рисунок 12

6.2. Усреднение значений молярных долей компонентов

Программа выдает значение объёмной и молярной доли компонента, найденное как среднее арифметическое значений молярных долей этого компонента в двух выбранных хроматограммах.

6.3.Сходимость результатов определения компонентного состава

Фактическая сходимость определения молярной доли компонента рассчитывается как разность значений молярных долей этого компонента в двух выбранных хроматограммах. Фактическая сходимость результатов определения компонентного состава отражается в графе "Расхождение" таблицы компонентов основного окна программы.

6.4.Предел сходимости результатов определения компонентного состава

При оценке сходимости по ГОСТ 31371.7-08 формула предела сходимости принимает следующий вид:

 $r^* = 1.4 \cdot \sqrt{(U_j)^2 - 2.0 \cdot (U_j^{epad})^2}$

При этом неопределенность средства градуировки $U_j^{\text{град}}$ может быть задана в ручном режиме или рассчитаны автоматически .

6.5. Неопределенность результатов определения компонентного состава

Расчет неопределенностей проводится автоматически в соответствии с линейными зависимостями Таблицы 1 для ГОСТ 31371.7-08.

Если пользователь располагает значениями неопределенности градуировки, то имеется возможность задавать свои значения неопределенности в ручном режиме.

Для этого в столбце "Неопределенность градуировки" окна "Имена компонентов" необходимо проставить свои значения.

Заданные вручную неопределенности определения компонентного состава появятся в графе "Абс. расшир. неопределенность" таблицы компонентов основного окна программы.

Для компонентов, неопределенности определения которых не задавались пользователем, сохраняются автоматические оценки этой метрологической характеристики.

6.6.Прочие компоненты

Программа позволяет добавлять в расчет до пяти компонентов, которые отсутствуют в хроматограммах и могут рассматриваться как присутствующие при постоянном содержании. Добавлять такие компоненты можно в поле "Прочие компоненты, мол%" основного окна программы (рис.13).

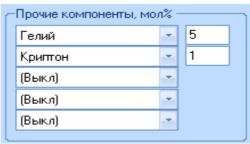


Рисунок 13

По умолчанию программа для всех прочих компонентов устанавливает значение "выкл". В качестве "прочего компонента" может быть выбран любой из компонентов, перечисленных в ГОСТ 31369-08. (рис.18).

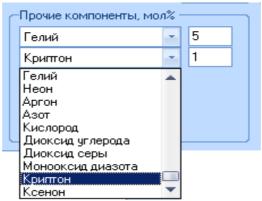


Рисунок 14

Введите концентрацию добавляемого в расчет компонента в молярных процентах.

После ввода концентрации, в таблице компонентов основного окна программы появляется добавляемый "прочий компонент" и его содержание в молярных и объёмных процентах.

Если среди прочих компонентов есть компонент, который всё-таки присутствует на хроматограмме, то его концентрация переопределяется тем значением, что указана справа от названия компонента в окне диалога. Это работает и в том случае, если концентрация прочего компонента установлена в ноль.

Для правильного расчёта среди прочих компонентов не должно быть веществ, которые присутствуют на хроматограмме. Если они всё-таки встретились - для корректного расчёта выберите в соответствующем списке значение (Выкл).

7. Расчет физико-химических свойств природного газа

7.1. Расчет физико-химических свойств природного газа

Расчет коэффициента сжимаемости, средней молярной массы, теплот сгорания, чисел Воббе, абсолютной и относительной плотности проводится в точном соответствии с п.п. 48 ГОСТ 31369-08. Объемная теплота сгорания идеального газа рассчитывается по основной, а не альтернативной формуле.

Пример расчета свойств природного газа показан на рис. 15. 🥝 Природный газ - приложение к программе Хромос (ГОСТ 31371.7-08, ГОСТ 31369-08) Проба (**-**) Анализ <u>1</u> () Анализ 2 ДТП_1_180209_180209_120656.stg Л1--1 Анализ1 ДТП 2 180209 180209 120657.stg Л1--1 Анализ1 <u>К</u>алибровка 1 ПИД 180209 180209 120658.stg Л1--1 Анализ1 ДТП_1_180209_180209_123901.stg $\Pi 1 - 2$ Анализ2 <u>К</u>алибровка 2 ДТП_2_180209_180209_123902.stg 01 - 2Анализ2 ПИД 180209 180209 123903.sta $\Pi 1 - 2$ Анализ2 <u>К</u>алибровка 3 ДТП_1_180209_180209_095406.stg 3C 2411-1 Калибров.1 ДТП_1_180209_180209_102919.stg 3C 2411-2 Калибров.2 🦲) <u>Уд</u>алить 🛚 (🔀) Удалить <u>в</u>се ДТП_1_180209_180209_110153.stg 3C 2411-3 Калибров.3 Концентрация Концентрация Расхождение Предел сходим. Абс.расш. Температура сгорания Компонент [MOJ%] неопр.(мол%) (мол%) (06%) (мол%) 20 Ŧ Температура измерения Метан 97.89 97.88 0.04 0.89 0.89 0.0006 0.012 ▼ Этан об% Размерность калибровки 🔽 Пропан 0.286 0.291 0.0010 0.005 0.018 Прочие компоненты, мол% 0.049 0.00005 0.0014 0.003 🔽 н-Бутан 0.051 (Выкл) 🔽 и-Бутан 0.053 0.055 0.0005 0.0014 0.004 🔽 н-Пентан 0.000006 0.0005 0.0080 0.0085 0.0007 (Выкл) и-пентан 0.0104 0.0109 0.00011 0.0005 0.0009 ÷ (Выкл) **М** нео-пентан 0.0012 0.0013 0.000011 0.0004 0.0003 (Выкл) 🔽 Гексан 0.0014 0.0015 0.000007 0.0005 0.0003 🛂 Азот (Выкл) 0.73 0.73 0.0007 0.025 0.03 Предел Абс. расшир. Расхождение Проверка Физико-химические показатели реального газа Результат сходимости неопределенность калибровки 🔽 Высшая молярная теплота сгорания, кДж/моль 🔽 Низшая молярная теплота сгорания, кДж/моль 807.8 0.009 0.11 0.9 Компоненты 54.58 0.00018 0.007 0.05🔽 Высшая массовая теплота сгорания, МДж/кг. Настройка 49.21 0.00018 0.007 0.05Низшая массовая теплота сгорания. МДж/кг 37.32 0.0004 0.005 0.04 🔽 Высшая объёмная теплота сгорания, МДж/м3 0.04🔽 Низшая объёмная теплота сгорания, МДж/мЗ 33.65 0.00040.004О программе Плотность, кг/м3 0.6837 0.000005 0.00017 0.0003 Справка 0.56765 0.000004 0.00014 0.00029 Относительная плотность Средняя молярная масса, кг/моль 16.415 0.00012 0.004 0.008 Отчёт Число Воббе высшее, МДж/м3 49.53 0.0004 0.009 0.05 Число Воббе низшее, МДж/м3 44.66 0.0003 0.008 0.05 Коэффициент сжимаемости 0.9980 Выход

Рисунок 15

Характеристики качества природного газа отражаются в графе "Расчетные" таблицы физикохимических показателей основного окна программы. На экран выводятся только физико-химические показатели, отмеченные в окне "Настройки" галочками.

7.2.Сходимость результатов вычислений

Фактическая сходимость определения физико-химического показателя находится как разность максимального и минимального значений, полученных для всех единичных анализов природного газа, выбранных пользователем для расчета. Фактическая сходимость результатов определения компонентного состава отражается в графе "Расхождение" таблицы физико-химических показателей основного окна программы.

7.3.Оценка пределов сходимости.

Оценка предела сходимости проводится автоматически в соответствии с ГОСТ 31371.7-08. Внимание! В основе расчета пределов сходимости физико-химических показателей лежат пределы сходимости компонентов природного газа. Поэтому на результат оценки пределов сходимости физико-химических показателей влияет Ваш выбор пределов сходимости результатов определения компонентного состава (см. п.6.4).

Предел сходимости определения свойств природного газа отражается в одноименной графе таблицы физико-химических показателей основного окна программы.

Если пользователь выбрал для расчета хроматограммы, соответствующие более чем двум единичным анализам, то вместо пределов сходимости рассчитываются критические диапазоны. В таблице физико-химических показателей основного окна программы заголовок графы "Предел сходимости" автоматически заменяется на "Критический диапазон".

7.4.Оценка неопределенности

Оценка неопределенностей проводится автоматически в соответствии с ГОСТ 31371.7-08.

Внимание!

В основе расчета неопределенностей физико-химических показателей лежат неопределенности результатов определения компонентов природного газа. Поэтому на результат оценки неопределенностей физико-химических показателей влияет способ задания (ручной или автоматический) неопределенностей результатов определения компонентного состава (см. п.6.5).

Неопределенность определения свойств природного газа отражается в графе "Абс. расшир. неопределенность" таблицы физико-химических показателей основного окна программы.

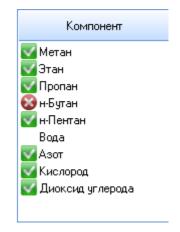
8. Ошибки и предупреждения

В нижней части основного окна программы выводятся ошибки и предупреждения.

Невозможно рассчитать предел сходимости для следующих компонентов: н-Бутан Калибровку невозможно проверить. Нет возможности расчитать норматив. Критерий сходимости компонентов не пройден.

Неизвестные компоненты в градуировке: Гексан, и-Бутан, нео-Пентан, и-Пентан Неизвестные компоненты в анализах: Гексан, и-Бутан, нео-Пентан, и-Пентан

В случае возникновения каких-либо ошибок в нижней части появится значок с восклицательным знаком, и будут выведены все ошибки и предупреждения расчёта.

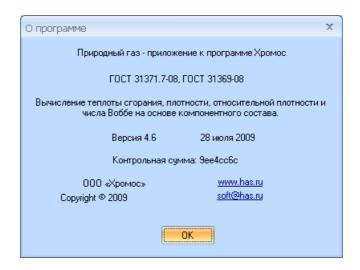

Особые пометки рядом с названиями компонентов и расчётных величин помогают конкретизировать ошибку расчёта.

Знак и показывает, что критерий сходимости пройден. Проблем с расчётом этого компонента или параметра нет.

Знак показывает, что критерий сходимости не пройден. Необходимо разобраться с данным компонентом, посмотрев изначальные хроматограммы.

Знак особщает о том, что предел сходимости проверить невозможно. Возникла ситуация, когда подкоренное выражение в формуле предела сходимости стало нулевым или отрицательным. Необходимо разобраться в значениях абсолютных расширенных неопределённостей для компонентов и средства градуировки.

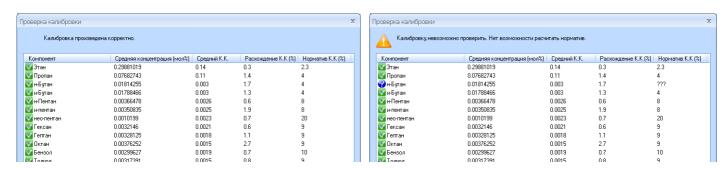
Отсутствие значка говорит о том, что данный компонент является прочим компонентом, и задан вручную.


9. Идентификация программы

Для получения идентификатора в приложении к программе Хромос "Природный газ" нужно нажать на кнопку "О программе".

Здесь можно узнать версию приложения "Газ природный" и дату компиляции.

Уникальным идентификатором программы считается контрольная сумма, вычисленная по алгоритму CRC32.


Эта контрольная сумма тоже выводится в данном диалоге для идентификации копии программы.

10.Проверка калибровки

После загрузки в приложение градуировочных хроматограмм рассчитывается критерий приемлемости градуировки. В случае, если критерий не пройден в нижней части расчёта в разделе ошибок будет выведено сообщении о некорректности калибровки.

Для вывода более подробного отчёта о проверке градуировки можно нажать на кнопку "Проверка градуировки" в основном окне приложения.

В диалоге "Проверка калибровки" отображаются средние калибровочные коэффициенты, рассчитанное расхождение калибровочных коэффициентов вместе с нормативом.

В верхней части отображается результат проверки калибровки.

Знак и показывает, что критерий проверки сходимости калибровочного коэффициента для данного компонента пройден.

Знак опоказывает, что критерий проверки сходимости калибровочного коэффициента не пройден. Необходимо разобраться с данным компонентом, посмотрев изначальные хроматограммы.

Знак С сообщает о том, что предел проверки сходимости калибровочного коэффициента проверить невозможно. Возникла ситуация, когда подкоренное выражение в формуле норматива сходимости стало нулевым или отрицательным. Необходимо разобраться в значениях абсолютных расширенных неопределённостей для компонентов и средства градуировки.

Проверка приемлемости градуировки осуществляется согласно ГОСТ 31371.7-08:

$$R_{Kj}^* = 0.8 \cdot \sqrt{(U_{0j})^2 - 2.0 \cdot (U_{0j}^{spad})^2}$$

11. Формирование отчёта по результатам расчёта

Для создания отчета кликните мышкой по кнопке "Отчет" основного окна программы.

Отчет включает в себя:

- названия анализируемых проб с именами соответствующих хроматограмм с указанием путей их расположения на компьютере;
- таблицу калибровки с калибровочными коэффициентами, их расхождением и нормативом;
- таблицу компонентов определяемых хроматографически и добавленных в качестве "прочих компонентов" с указанием в молярных процентах усредненного содержания компонентов, фактической сходимости (расхождения), предела сходимости и расширенной неопределенности;
- указание на то, что расчет выполнен по ГОСТ 31369-08;
- стандартные температуры сгорания и измерения;
- таблицу физико-химических показателей природного газа с указанием значений этих показателей, фактической сходимости (расхождения), предела сходимости и расширенной неопределенности.

В программе "Природный газ" не предусмотрено специального средства для хранения и вызова результатов предыдущих расчётов.

Программа генерирует отчёт в виде временного html-файла, и показывает его с помощью штатного браузера, установленного в системе. Как правило, штатным браузером является Internet Explorer.

После генерации отчёта оператор может распечатать или сохранить отчёт средствами самого браузера.

12. Экспорт данных

В программе предусмотрена возможность экспорта данных из таблицы компонентов основного окна программы. Для этого кликните правой клавишей мышки в таблицу компонентов (рис.16), затем левой клавишей мышки кликните по появившейся кнопке "Копировать в буфер". Откройте приложение, в которое требуется экспортировать данные (например, Microsoft Exel), и вставьте их с помощью стандартной для этого приложения команды (например, Вставить).

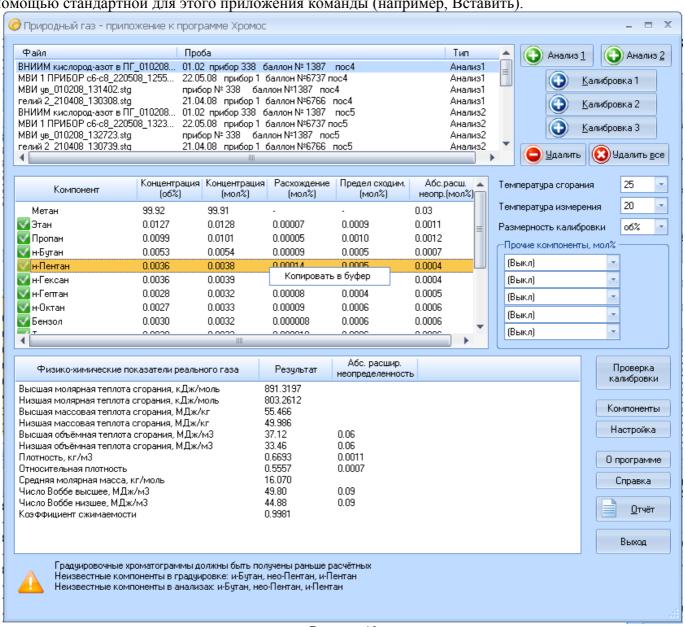


Рисунок 16